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In this supplemental material, we give more details about several points discussed in the main paper. In Sec. S1, we discuss the
time-dependent matrix-product state (t-MPS) simulations and the choice of the numerical parameters to ensure the convergence
of the results in all the regimes of the Bose-Hubbard model considered in the main paper. In Sec. S2, we present t-MPS results
for the spreading of the one-body correlation function G1 in the mean-field superfluid (SF) regime. Section S3 briefly outlines
the mapping from the 1D Bose-Hubbard model to the Lieb-Liniger model and gives the correspondance of the parameters.
Finally, in Sec. S4 we discuss the strong-coupling expansion of the correlation function G2 for unit filling, n = 1, and discuss
the suppression of its twofold structure deep in the Mott insulator (MI) phase.

S1. TIME-DEPENDENT MATRIX-PRODUCT STATE SIMULATIONS

The numerical results reported in the main paper are all obtained using the time-dependent density-matrix renormalization
group approach (DMRG) with the matrix-product state representation (t-MPS approach) [1–3]. It yields numerically-exact
results on both equilibrium and out-of-equilibrium properties of low dimensional lattice models. The approach resorts on the
Schmidt expansion of the many-body wave function and permits to reduce the Hilbert space to a finite, relevant subset, provided
the entanglement entropy remains sufficiently small. Owing to the area law [4, 5], it is optimal for 1D lattice models with a finite
local Hilbert space in gapped phases, the entanglement of which remains finite in the thermodynamic limit. It also applies to
gapless phases, although with more stringent numerical parameters (high-filling cut-off and the bond dimension). To validate the
accuracy of our results in all phases of the BH model, a systematic study of the effect of these parameters has been performed.

Truncation of the local Hilbert space.— For the BH model considered in this work, the local Hilbert space is spanned by
the Fock basis of number states, |nR〉, where nR ∈ N, which is infinite. However, the probability distribution of the lattice-
site occupation nR decays faster than exponentially in both the SF and MI phases. Accurate results can thus be obtained by
cutting off the local Hilbert space to some value nmax. It is important to note that, in some cases, the value of nmax needs to be
significantly much larger than the average filling n and its fluctuations. This observation is consistent with analyses of truncated
Bose-Hubbard models using quantum Monte Carlo simulations [6].

The SF mean-field regime, which corresponds to a high filling factor n̄ and the gapless dispersion relation, has the most
binding criteria. We found that a good estimator for nmax is given by the condition 1 −

∑nmax
n=0 P (n) . 10−2, where P (n) is

the probability that n bosons occupy a given lattice site. In the SF mean-field regime, the probability distribution is nearly
Poissonian, P (n) ' n̄ne−n̄/n!. For instance, for the filling factor n = 5 used for the data of Fig. 2, it yields nmax & 12. For the
strongly correlated SF regime at n = 1 considered for Fig. 3(a), the density fluctuations are significantly suppressed and using
the same condition as previously leads to nmax = 5. For the MI phase at n̄ = 1 and moderate values of U/J (15 ≥ U/J ≥ uc)
considered for Fig. 3(b), we kept nmax = 5. Deep in the MI phase (U/J ≥ 15), truncating the local Hilbert space to nmax = 2, as
used for Fig. 3(c) turns out to be sufficient. Finally, the strongly interacting SF regime is the easiest case from a numerical point
of view. Owing to the low filling factor n̄ < 1 and the large value of the interaction parameter U/J , the above condition also
yields nmax = 2, as used for Fig. 4. In all cases, we have checked that the numerics are converged for these values of nmax.

Bond dimension.— Within the MPS approach, the many-body state for a M -site lattice is represented in the tensor network
form

|Ψ〉 =
∑

n1,n2,...nM

An1 [1]An2 [2] . . . AnM [M ] |n1, n2, . . . , nM 〉 , (S1)

where nj spans a local Hilbert space basis. For the BH model, it corresponds to a Fock basis truncated at nmax. For each value
of nj , the quantity Anj [j] is a χj−1 × χj matrix, where χj is the rank associated to the Schmidt matrix when applying the j-th
singular value decomposition [2]. The bond dimension χ is defined as the maximum rank, χ = maxj (χj) , j ∈ [0 . . .M ].
Note that for open-boundary conditions, the quantities An1 [1] and AnM [M ] are actually a row vector and a column vector,
respectively, i.e. χ0 = χM = 1.

In the numerics, the maximum value of χ is chosen sufficiently large so that the truncation does not affect the results. In
practice, the calculations are run for several values of χ up to convergence of the correlation function G1(R, t) or G2(R, t). The
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required value of χ significantly depends on the regime and on the observable. In the following, we give the values used for the
final results presented in the paper.

For the SF mean-field regime [Figs. 2(a) and S1], we used the values χ = 300 and χ = 450 for the G2 and G1 functions,
respectively. The bond dimension used for G1 is higher than the one for G2 due to the long-range phase correlations already
present at equilibrium. For the SF strongly correlated regime at n = 1 [Fig. 3(a)], we used χ = 300 for both correlation
functions. A similar value of χ was considered for moderate values of U/J in the MI phase at n̄ = 1 [Fig. 3(b)]. Deep in the
MI phase [Fig. 3(b)], the bond dimension can be significantly decreased and we consider χ = 100. Finally, in the SF strongly
interacting regime at U/J = 50, we found that the value χ = 100 is enough.

S2. ONE-BODY CORRELATION FUNCTION G1(R, t) IN THE MEAN-FIELD REGIME

In the analysis of the SF mean-field regime reported in the main paper, we focused on the two-body correlation function
G2(R, t). We have also studied the one-body correlation G1(R, t) using the same t-MPS simulations. We found that the
dynamics of the G1 function shows a spike-like structure, similar to that found for the G2 function. The values of the correlation
edge (VCE) and maxima (Vm) velocities agree with those found for the G2 function within less than 10%. Figure S1 shows an
example, for the quench from (Un/J)0 = 1 to Un/J = 0.5, and n̄ = 5. The fits to the correlation edge and to the maxima yield
the velocities VCE = (4.4 ± 0.3) J/~ and Vm = (3.3 ± 0.2) J/~, in excellent agreement with the corresponding values found
from the dynamics of the G2 function, see Fig. 2(b).

The agreement between the spreading velocities for different correlation functions was found in all regimes, see for instance
Figs. 3(d1) and (d2). It is consistent with the prediction that these velocities are characteristic of the excitation spectrum and
not on the details of the correlation function [7]. Note, however, that the full space-time dependence of the signal depends on
the correlation function. In general, we found that the signal for G1 is less sharp than for G2. This may be attributed to the
long-range phase correlations present in the initial state, which blur the correlation function [8].

Figure S1: Spreading of the one-body correlation function G1(R, t) for a global quench in the SF mean-field regime from (U/J)0 = 0.2 to
U/J = 0.1 and n̄ = 5. The solid-green and dashed-blue lines are fits to the CE and maxima, respectively.

S3. MAPPING ON THE 1D LIEB-LINIGER MODEL

In the long-wave length regime, the lattice discretization of the Bose-Hubbard (BH) may be disregarded. The BH model then
maps onto the continuous-space Lieb-Liniger (LL) model,

Ĥ =
~2

2m

− N∑
i=1

∂2

∂x2
i

+ c
∑
i6=j

δ(xi − xj)

 . (S2)

It describes a one-dimensional gas of N bosons of mass m with contact interactions, characterized by the interaction strength
c > 0. The correspondance between the parameters of the BH and LL models is found by discretizing the LL model, Eq. (S2),
on the length scale defined by the lattice spacing a. It yields J = ~2/2ma2 and U = ~2c/ma. The density of the LL model is
ρ ≡ N/L = n/a, where n is the number of bosons per lattice site (filling) and L is the system size.
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The LL Hamiltonian is exactly solvable by Bethe ansatz [9, 10]. All the thermodynamic quantities at zero temperature can be
written as universal functions of the Lieb-Liniger parameter γ = c/ρ and the dimensionless quantity e(γ) = E0/Nn

2, where
E0 is the ground state energy. For instance, the macroscopic sound velocity [10] reads as

vs ≡

√
L

mρ

∂2E0

∂L2

∣∣∣∣
N,S

=
~ρ
m

√
3e(γ)− 2γe′(γ) +

1

2
γ2e′′(γ). (S3)

Using the small γ expansion, e(γ) = γ
[
1− (4/3π)

√
γ
]
, one then finds

vs =
~ρ
m

√
γ
(
1−√γ/4π

)
, (S4)

valid in the weakly-interacting regime, γ � 1. Finally, using the correspondance between the parameters of the BH and LL
models, one finds

Vs ≡ vs/a =
2Jn

~
√
γ
(
1−√γ/4π

)
(S5)

and γ = U/2Jn.

S4. TWO-BODY CORRELATION FUNCTION G2(R, t) IN THE MOTT-INSULATING PHASE

In order to explain the suppression of the twofold structure for the two-body correlations deep in the Mott insulator phase
(MI; U � J and n = 1), we compute the function G2(R, t), working along the lines of Ref. [11]. Considering the manifold
of doublon-holon pairs and mapping the resulting Hamiltonian into a fermionic one, the two-body correlation function may be
written as

G2(R, t) ' −2
(
|g2(R, t)|2 + |ḡ2(R, t)|2

)
, (S6)

with

g2(R, t) ∼ J

U

R

t

ˆ +π

−π

dk
2π

{
ei(2Ekt+kR) + ei(2Ekt−kR)

}
, (S7)

ḡ2(R, t) ∼
(
J

U

)2 ˆ +π

−π

dk
2π

sin2(k)
{

ei(2Ekt−kR) + e−i(2Ekt+kR)
}

(S8)

and the excitation spectrum is 2Ek '
√

[U − 2J(2n̄+1) cos(k)]
2

+ 16J2n̄(n̄+1) sin2(k), see Eq. (3).

Quench deep into the Mott insulator phase.— For a quench, very deep in the MI phase, U � J , the second right-hand-side
term in Eq. (S6) is much smaller than the first one and the former can be neglected. Using Eq. (S7), it yields explicitly for
G2(R, t) ' −2|g2(R, t)|2,

G2(R, t) ∼ −2

(
J

U

)2(
R

t

)2 ∣∣∣∣ˆ π

−π

dk
2π

{
ei(2Ekt+kR) + ei(2Ekt−kR)

}∣∣∣∣2 (S9)

Moreover, the excitation spectrum may be expanded in powers of J/U . Up to first-order, it yields 2Ek ' U−2J(2n̄+1) cos(k).
The gap term eiUt can then be factorized in the two terms under the integral in Eq. (S9) and disappears due to the square modulus.
Introducing the effective excitation spectrum 2Ẽk = −2J(2n̄+ 1) cos(k), we then find G2 ' −2|g2(R, t)|2 with

g2(R, t) ∼ J

U

R

t

ˆ π

−π

dk
2π

{
ei(2Ẽkt+kR) + ei(2Ẽkt−kR)

}
. (S10)

The integral may be evaluated using the stationary phase approximation. In the infinite time and distance limit along the line
R/t = cst, the integral in Eq. (S10) is dominated by the momentum contributions with a stationary phase (sp), i.e. ∂k(2Ẽkt ±
kR) = 0 or, equivalently, 2Ṽg(ksp) = ±R/t where Ṽg = ∂kẼk is the group velocity of the effective excitation spectrum. Since
the latter is upper bounded by the value Ṽ ∗g = max(Ṽg) = J(2n̄+ 1), it has a solution only for R/t < 2Ṽ ∗g . We then find

g2(R, t) ∼ J

U

Ṽg(ksp)(
|∂2
kẼksp |t

)1/2

[
cos
(

2Ẽkspt− kspR+ σ
π

4

)
+ i sin

(
2Ẽkspt− kspR+ σ

π

4

)]
. (S11)
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with σ = sgn
(
∂2
kẼksp

)
. For both the real and imaginary parts of g2(R, t), the correlations are activated ballistically at the time

t = R/2Ṽ ∗g . It defines a linear correlation edge (CE) with velocity VCE = 2Ṽ ∗g . In addition, Eq. (S11) also yields a series of
local maxima, defined by the equation 2Ẽkspt− kspR = cst. In the vicinity of the CE cone, these maxima (m) propagate at the
velocity Vm = 2Ṽ ∗ϕ = 2Ẽk∗/k

∗, i.e. twice the phase velocity at the maximum of the group velocity, k∗.
Hence, the real and imaginary parts of g2(R, t) both display a twofold structure with a CE velocity 2Ṽ ∗g = 2J(2n̄+ 1) and a

velocity of the maxima 2Ṽ ∗ϕ = 0, as shown on Figs. S2(a) and (b). In contrast, G2(R, t), does not display the twofold structure.
This is because it is the sum of the squares of the two latter contributions [see Eq. (S11)], which are shifted by half a period and
cancel each other. It thus gives a single cone structure, characterized by the sole CE velocity 2Ṽ ∗g , as shown on Fig. S2(c).

Figure S2: Analysis of the space-time correlation pattern of G2(R, t) via g2(R, t) [see Eq. (S10)] at n̄ = 1 for a global quench confined deep
into the Mott-insulating phase starting from a pure Mott state (U/J)0 →∞. Analytical expression, owing to prefactors, of (a) −<2 [g2(R, t)]
(b) −=2 [g2(R, t)] (c) sum of the two contributions shown at Fig. (a) and (b). The solid green line corresponds to the theoretical CE velocity
characterized by 2Ṽ ∗

g = 2J(2n̄ + 1). On Fig. (c), the first extremum propagates with the same velocity as the one associated to the CE.

Quench into the Mott insulator phase for moderate U/J .— For moderate values of U/J , still in the MI phase, the second
term in the right-hand-side of Eq. (S6), |ḡ2(R, t)|2, becomes relevant. Using again the stationary-phase approximation for
ḡ2(R, t), we find

ḡ2(R, t) ∼
(
J

U

)2
sin2(ksp)(
|∂2
kEksp |t

)1/2 cos
(

2Ekspt− kspR+ σ′
π

4

)
(S12)

with σ′ = sgn
(
∂2
kEksp

)
and Ek the excitation spectrum given at Eq. (3). Using the same argument as above, we find that

ḡ2(R, t) shows a twofold structure characterized by, now, the CE velocity 2V ∗g = 2max (∂kEk) but the velocity of the maxima
2V ∗ϕ = 2Ek∗/k

∗ 6= 0. Since there is a single contribution here, the quantity |ḡ2(R, t)|2 displays a twofold structure with the
same characteristic velocities. More precisely, both the length and time scales of the oscillations are divided by two but the
velocities are not affected.

For a quench into the MI phase at a moderate value of U/J , both |g2(R, t)|2 and |ḡ2(R, t)|2 contribute to the two-body
correlation function G2(R, t). While the |g2(R, t)|2 contribution is characterized by the sole CE velocity 2V ∗g , the |ḡ2(R, t)|2
contribution provides the double structure observed on G2 for 6 < U/J < 10 in the t-MPS calculations.
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